linux系统实现DataX任务进程多并发以及自定义并发数

下面是我之前用datax任务多并发数据上云时写的shell脚本(已进行精简),注释比较详尽

运行方式 ./ty_commit_task_to.sh 10     其中10代表并发任务量,可根据自身服务器的CPU等配置进行合理输入数值

大家有需要进行其他并发进程时也可采用这个模板

#!/bin/bash
################################################################################
# 脚本名称       : ty_commit_task_to.sh 并发提交表json的datax任务
#
# 创建日期       : 2019/11/27
# 作者           : mochou
#
# 描述           : 提交datax任务上云-数据库增量数据
# 参数描述       : 1 并发数 processNum
#
# 修改记录      :
#
#    日期    操作           操作人员                      描述		
# ________  _______   __________________    __________________________________
#
# 2019/11/27  创建    mochou   
################################################################################

if [ $# -lt 1 ] ; then
   echo  "please input right parameters"
   exit 1;
fi
processNum=$1
## base path
basePath="/u01/work"
jsonNum=`ls ${basePath}/*.json | wc -l`

if [ ${processNum} -gt ${jsonNum} ] ;then
	echo "must less than json_nums :${jsonNum}"
	exit 1;
fi

# named by cur_fifo
fifoName="/tmp/$$.fifo"
mkfifo ${fifoName}
# define file ,default 3
exec 3<>"${fifoName}"
# save fd is ok
rm -rf ${fifoName}
# define numbers 
for ((i=1;i<=${processNum};i++)) do
	echo >&3
done

for file in `ls ${basePath}/*.json` ;do
	# read null
	read -u3
	{
		# run json task
		python datax.py --jvm="-Xms4g -Xmx4g" ${file} 2>&1 >> ${file}.log
		result=$?
		if [ ${result} -eq 0 ] ;then
			echo "succ" 
		else
			echo "fail"
		fi
		sleep 1
		# write null end 
		echo >&3
	}&
done

# close read
exec 3<&-
# close write
exec 3>&-

 

相关推荐
一. DataX3.0 概览  DataX 是一个异构据源离线同步工具,致力于实现包括关系型据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构据源之间稳定高效的据同步功能。  设计理念  为了解决异构据源同步问题,DataX 将复杂的网状的同步链路变成了星型据链路,DataX 作为中间传输载体负责连接各种据源。当需要接入一个新的据源的时候,只需要将此据源对接到 DataX,便能跟已有的据源做到无缝据同步。  当前使用现状  DataX 在阿里巴巴集团内被广泛使用,承担了所有大据的离线同步业务,并已持续稳定运行了 6 年之久。目前每天完成同步 8w 多道作业,每日传输据量超过 300TB。  此前已经开源 DataX1.0 版本,此次介绍为阿里巴巴开源全新版本 DataX3.0,有了更多更强大的功能和更好的使用体验。Github 主页地址:https://github.com/alibaba/DataX。  二、DataX3.0 框架设计  DataX 本身作为离线据同步框架,采用 Framework plugin 架构构建。将据源读取和写入抽象成为 Reader/Writer 插件,纳入到整个同步框架中。  Reader:Reader 为据采集模块,负责采集据源的据,将据发送给 Framework。  Writer: Writer 为据写入模块,负责不断向 Framework 取据,并将据写入到目的端。  Framework:Framework 用于连接 reader 和 writer,作为两者的据传输通道,并处理缓冲,流控,并发据转换等核心技术问题。  三. DataX3.0 插件体系  经过几年积累,DataX 目前已经有了比较全面的插件体系,主流的 RDBMS 据库、NOSQL、大据计算系统都已经接入。DataX 目前支持据如下:  DataX Framework 提供了简单的接口与插件交互,提供简单的插件接入机制,只需要任意加上一种插件,就能无缝对接其他据源。详情请看:DataX 据源指南  四、DataX3.0 核心架构  DataX 3.0 开源版本支持单机多线程模式完成同步作业运行,本小节按一个 DataX 作业生命周期的时序图,从整体架构设计非常简要说明 DataX 各个模块相互关系。  核心模块介绍:  DataX 完成单个据同步的作业,我们称之为 Job,DataX 接受到一个 Job 之后,将启动一个进程来完成整个作业同步过程。DataX Job 模块是单个作业的中枢管理节点,承担了据清理、子任务切分(将单一作业计算转化为多个子 Task)、TaskGroup 管理等功能。  DataXJob 启动后,会根据不同的源端切分策略,将 Job 切分成多个小的 Task (子任务),以便于并发执行。Task 便是 DataX 作业的最小单元,每一个 Task 都会负责一部分据的同步工作。  切分多个 Task 之后,DataX Job 会调用 Scheduler 模块,根据配置的并发据量,将拆分成的 Task 重新组合,组装成 TaskGroup (任务组)。每一个 TaskGroup 负责以一定的并发运行完毕分配好的所有 Task,默认单个任务组的并发量为5。  每一个 Task 都由 TaskGroup 负责启动,Task 启动后,会固定启动 Reader>Channel>Writer 的线程来完成任务。 标签:据同步
©️2020 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页